Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Biomolecules ; 13(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136647

RESUMO

Currently, there is great interest in the development of highly sensitive bioanalytical systems for diagnosing diseases at an early stage, when pathological biomarkers are present in biological fluids at low concentrations and there are no clinical manifestations. A promising direction is the use of molecular detectors-highly sensitive devices that detect signals from single biomacromolecules. A typical detector in this class is the atomic force microscope (AFM). The high sensitivity of an AFM-based bioanalysis system is determined by the size of the sensing element of an atomic force microscope-the cantilever-the radius of the curvature of which is comparable to that of a biomolecule. Biospecific molecular probe-target interactions are used to ensure detection system specificity. Antibodies, aptamers, synthetic antibodies, and peptides can be used as molecular probes. This study has demonstrated the possibility of using aptamers as molecular probes for AFM-based detection of the ovarian cancer biomarker CA125. Antigen detection in a nanomolar solution was carried out using AFM chips with immobilized aptamers, commercially available or synthesized based on sequences from open sources. Both aptamer types can be used for antigen detection, but the availability of sequence information enables additional modeling of the aptamer structure with allowance for modifications necessary for immobilization of the aptamer on an AFM chip surface. Information on the structure and oligomeric composition of aptamers in the solution was acquired by combining small-angle X-ray scattering and molecular modeling. Modeling enabled pre-selection, before the experimental stage, of aptamers for use as surface-immobilized molecular probes.


Assuntos
Aptâmeros de Nucleotídeos , Microscopia de Força Atômica , Aptâmeros de Nucleotídeos/química , Sondas Moleculares , Modelos Moleculares
2.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958620

RESUMO

Currently, nanopore-based technology for the determination of the functional activity of single enzyme molecules continues its development. The use of natural nanopores for studying single enzyme molecules is known. At that, the approach utilizing artificial solid-state nanopores is also promising but still understudied. Herein, we demonstrate the use of a nanotechnology-based approach for the investigation of the enzymatic activity of a single molecule of horseradish peroxidase with a solid-state nanopore. The artificial 5 nm solid-state nanopore has been formed in a 40 nm thick silicon nitride structure. A single molecule of HRP has been entrapped into the nanopore. The activity of the horseradish peroxidase (HRP) enzyme molecule inserted in the nanopore has been monitored by recording the time dependence of the ion current through the nanopore in the course of the reaction of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) oxidation reaction. We have found that in the process of ABTS oxidation in the presence of 2.5 mM hydrogen peroxide, individual HRP enzyme molecules are able to retain activity for approximately 700 s before a decrease in the ion current through the nanopore, which can be explained by structural changes of the enzyme.


Assuntos
Nanoporos , Peroxidase do Rábano Silvestre/química , Ácidos Sulfônicos/química , Benzotiazóis/química , Substâncias Macromoleculares
3.
Micromachines (Basel) ; 14(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893383

RESUMO

The development of highly sensitive diagnostic systems for the early revelation of diseases in humans is one of the most important tasks of modern biomedical research, and the detection of the core antigen of the hepatitis C virus (HCVcoreAg)-a protein marker of the hepatitis C virus-is just the case. Our study is aimed at testing the performance of the nanoribbon biosensor in the case of the use of two different types of molecular probes: the antibodies and the aptamers against HCVcoreAg. The nanoribbon sensor chips employed are based on "silicon-on-insulator structures" (SOI-NR). Two different HCVcoreAg preparations are tested: recombinant ß-galactosidase-conjugated HCVcoreAg ("Virogen", Watertown, MA, USA) and recombinant HCVcoreAg ("Vector-Best", Novosibirsk, Russia). Upon the detection of either type of antigen preparation, the lowest concentration of the antigen detectable in buffer with pH 5.1 was found to be approximately equal, amounting to ~10-15 M. This value was similar upon the use of either type of molecular probes.

4.
Metabolites ; 13(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887420

RESUMO

Recently, a clinical blood metabogram was developed as a fast, low-cost and reproducible test that allows the implementation of metabolomics in clinical practice. The components of the metabogram are functionally related groups of blood metabolites associated with humoral regulation, the metabolism of lipids, carbohydrates and amines, lipid intake into the organism, and liver function, thereby providing clinically relevant information. It is known that the gut microbiota affects the blood metabolome, and the components of the blood metabolome may affect the composition of the gut microbiota. Therefore, before using the metabogram in the clinic, the link between the metabogram components and the level of gut microorganisms should be established. For this purpose, the metabogram and microbiota data were obtained in this work for the same individuals. Metabograms of blood plasma were obtained by direct mass spectrometry of blood plasma, and the gut microbiome was determined by a culture-based method and real-time polymerase chain reaction (PCR). This study involved healthy volunteers and individuals with varying degrees of deviation in body weight (n = 44). A correlation analysis determined which metabogram components are linked to which gut microorganisms and the strength of this link. Moreover, diagnostic parameters (sensitivity, specificity and accuracy) confirmed the capacity of metabogram components to be used for diagnosing gut microbiota alterations. Therefore, the obtained results allow the use of the metabogram in a clinical setting, taking into account its relationship with gut microbiota.

5.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687982

RESUMO

Prostate cancer (PC) is one of the major causes of death among elderly men. PC is often diagnosed later in progression due to asymptomatic early stages. Early detection of PC is thus crucial for effective PC treatment. The aim of this study is the simultaneous highly sensitive detection of a palette of PC-associated microRNAs (miRNAs) in human plasma samples. With this aim, a nanoribbon biosensor system based on "silicon-on-insulator" structures (SOI-NR biosensor) has been employed. In order to provide biospecific detection of the target miRNAs, the surface of individual nanoribbons has been sensitized with DNA oligonucleotide probes (oDNA probes) complementary to the target miRNAs. The lowest concentration of nucleic acids, detectable with our biosensor, has been found to be 1.1 × 10-17 M. The successful detection of target miRNAs, isolated from real plasma samples of PC patients, has also been demonstrated. We believe that the development of highly sensitive nanotechnology-based biosensors for the detection of PC markers is a step towards personalized medicine.


Assuntos
MicroRNAs , Nanotubos de Carbono , Ácidos Nucleicos , Neoplasias da Próstata , Idoso , Masculino , Humanos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Nanotecnologia
6.
Metabolites ; 13(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37512504

RESUMO

Recently, the concept of a mass spectrometric blood metabogram was introduced, which allows the analysis of the blood metabolome in terms of the time, cost, and reproducibility of clinical laboratory tests. It was demonstrated that the components of the metabogram are related groups of the blood metabolites associated with humoral regulation; the metabolism of lipids, carbohydrates, and amines; lipid intake into the organism; and liver function, thereby providing clinically relevant information. The purpose of this work was to evaluate the relevance of using the metabogram in a disease. To do this, the metabogram was used to analyze patients with various degrees of metabolic alterations associated with obesity. The study involved 20 healthy individuals, 20 overweight individuals, and 60 individuals with class 1, 2, or 3 obesity. The results showed that the metabogram revealed obesity-associated metabolic alterations, including changes in the blood levels of steroids, amino acids, fatty acids, and phospholipids, which are consistent with the available scientific data to date. Therefore, the metabogram allows testing of metabolically unhealthy overweight or obese patients, providing both a general overview of their metabolic alterations and detailing their individual characteristics. It was concluded that the metabogram is an accurate and clinically applicable test for assessing an individual's metabolic status in disease.

7.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240343

RESUMO

Mass spectrometry (MS) is one of the main techniques for protein identification. Herein, MS has been employed for the identification of bovine serum albumin (BSA), which was covalently immobilized on the surface of a mica chip intended for investigation by atomic force microscopy (AFM). For the immobilization, two different types of crosslinkers have been used: 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) and dithiobis(succinimidyl propionate) (DSP). According to the data obtained by using an AFM-based molecular detector, the SuccBB crosslinker was more efficient in BSA immobilization than the DSP. The type of crosslinker used for protein capturing has been found to affect the results of MS identification. The results obtained herein can be applied in the development of novel systems intended for the highly sensitive analysis of proteins with molecular detectors.


Assuntos
Soroalbumina Bovina , Microscopia de Força Atômica/métodos , Soroalbumina Bovina/química , Espectrometria de Massas/métodos
8.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768195

RESUMO

The beginning of the twenty-first century witnessed novel breakthrough research directions in the life sciences, such as genomics, transcriptomics, translatomics, proteomics, metabolomics, and bioinformatics. A newly developed single-molecule approach addresses the physical and chemical properties and the functional activity of single (individual) biomacromolecules and viral particles. Within the alternative approach, the combination of "single-molecule approaches" is opposed to "omics approaches". This new approach is fundamentally unique in terms of its research object (a single biomacromolecule). Most studies are currently performed using postgenomic technologies that allow the properties of several hundreds of millions or even billions of biomacromolecules to be analyzed. This paper discusses the relevance and theoretical, methodological, and practical issues related to the development potential of a single-molecule approach using methods based on molecular detectors.


Assuntos
Genômica , Vírus , Genômica/métodos , Proteômica/métodos , Biologia Computacional , Metabolômica/métodos
9.
Pharmaceutics ; 15(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839983

RESUMO

In omics sciences, many compounds are measured simultaneously in a sample in a single run. Such analytical performance opens up prospects for improving cellular cancer vaccines and other cell-based immunotherapeutics. This article provides an overview of proteomics technology, known as cell proteomic footprinting. The molecular phenotype of cells is highly variable, and their antigenic profile is affected by many factors, including cell isolation from the tissue, cell cultivation conditions, and storage procedures. This makes the therapeutic properties of cells, including those used in vaccines, unpredictable. Cell proteomic footprinting makes it possible to obtain controlled cell products. Namely, this technology facilitates the cell authentication and quality control of cells regarding their molecular phenotype, which is directly connected with the antigenic properties of cell products. Protocols for cell proteomic footprinting with their crucial moments, footprint processing, and recommendations for the implementation of this technology are described in this paper. The provided footprints in this paper and program source code for their processing contribute to the fast implementation of this technology in the development and manufacturing of cell-based immunotherapeutics.

10.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614211

RESUMO

A meta-analysis of the results of targeted quantitative screening of human blood plasma was performed to generate a reference standard kit that can be used for health analytics. The panel included 53 of the 296 proteins that form a "stable" part of the proteome of a healthy individual; these proteins were found in at least 70% of samples and were characterized by an interindividual coefficient of variation <40%. The concentration range of the selected proteins was 10−10−10−3 M and enrichment analysis revealed their association with rare familial diseases. The concentration of ceruloplasmin was reduced by approximately three orders of magnitude in patients with neurological disorders compared to healthy volunteers, and those of gelsolin isoform 1 and complement factor H were abruptly reduced in patients with lung adenocarcinoma. Absolute quantitative data of the individual proteome of a healthy and diseased individual can be used as the basis for personalized medicine and health monitoring. Storage over time allows us to identify individual biomarkers in the molecular landscape and prevent pathological conditions.


Assuntos
Proteínas Sanguíneas , Plasma , Proteoma , Humanos , Proteínas Sanguíneas/metabolismo , Ceruloplasmina/metabolismo , Espectrometria de Massas/métodos , Plasma/metabolismo , Proteômica
11.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675249

RESUMO

In metabolomics, many metabolites are measured simultaneously in a single run. Such analytical performance opens up prospects for clinical laboratory diagnostics. In this work, a mass spectrometric metabogram was developed as a simplified and clinically applicable way of measuring the blood plasma metabolome. To develop the metabogram, blood plasma samples from healthy male volunteers (n = 48) of approximately the same age, direct infusion mass spectrometry (DIMS) of the low molecular fraction of samples, and principal component analysis (PCA) of the mass spectra were used. The seven components of the metabogram defined by PCA, which cover ~70% of blood plasma metabolome variability, were characterized using a metabolite set enrichment analysis (MSEA) and clinical test results of participating volunteers. It has been established that the components of the metabogram are functionally related groups of the blood metabolome associated with regulation, lipid-carbohydrate, and lipid-amine blood components, eicosanoids, lipid intake into the organism, and liver function thereby providing a lot of clinically relevant information. Therefore, metabogram provides the possibility to apply the metabolomics performance in the clinic. The features of the metabogram are also discussed in comparison with the thin-layer chromatography and with the analysis of blood metabolome by liquid chromatography combined with mass spectrometry.


Assuntos
Metaboloma , Metabolômica , Masculino , Humanos , Espectrometria de Massas/métodos , Metabolômica/métodos , Cromatografia Líquida/métodos , Lipídeos
12.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203578

RESUMO

This work demonstrates the use of a modified mica to concentrate proteins, which is required for proteomic profiling of blood plasma by mass spectrometry (MS). The surface of mica substrates, which are routinely used in atomic force microscopy (AFM), was modified with a photocrosslinker to allow "irreversible" binding of proteins via covalent bond formation. This modified substrate was called the AFM chip. This study aimed to determine the role of the surface and crosslinker in the efficient concentration of various types of proteins in plasma over a wide concentration range. The substrate surface was modified with a 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) photocrosslinker, activated by UV irradiation. AFM chips were incubated with plasma samples from a healthy volunteer at various dilution ratios (102X, 104X, and 106X). Control experiments were performed without UV irradiation to evaluate the contribution of physical protein adsorption to the concentration efficiency. AFM imaging confirmed the presence of protein layers on the chip surface after incubation with the samples. MS analysis of different samples indicated that the proteomic profile of the AFM-visualized layers contained common and unique proteins. In the working series of experiments, 228 proteins were identified on the chip surface for all samples, and 21 proteins were not identified in the control series. In the control series, a total of 220 proteins were identified on the chip surface, seven of which were not found in the working series. In plasma samples at various dilution ratios, a total of 146 proteins were identified without the concentration step, while 17 proteins were not detected in the series using AFM chips. The introduction of a concentration step using AFM chips allowed us to identify more proteins than in plasma samples without this step. We found that AFM chips with a modified surface facilitate the efficient concentration of proteins owing to the adsorption factor and the formation of covalent bonds between the proteins and the chip surface. The results of our study can be applied in the development of highly sensitive analytical systems for determining the complete composition of the plasma proteome.


Assuntos
Proteínas Sanguíneas , Proteômica , Humanos , Silicatos de Alumínio , Espectrometria de Massas
13.
Front Mol Biosci ; 9: 944639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545510

RESUMO

It has been shown that the best coverage of the HepG2 cell line transcriptome encoded by genes of a single chromosome, chromosome 18, is achieved by a combination of two sequencing platforms, Illumina RNA-Seq and Oxford Nanopore Technologies (ONT), using cut-off levels of FPKM > 0 and TPM > 0, respectively. In this study, we investigated the extent to which the combination of these transcriptomic analysis methods makes it possible to achieve a high coverage of the transcriptome encoded by the genes of other human chromosomes. A comparative analysis of transcriptome coverage for various types of biological material was carried out, and the HepG2 cell line transcriptome was compared with the transcriptome of liver tissue cells. In addition, the contribution of variability in the coverage of expressed genes in human transcriptomes to the creation of a draft human transcriptome was evaluated. For human liver tissues, ONT makes an extremely insignificant contribution to the overall coverage of the transcriptome. Thus, to ensure maximum coverage of the liver tissue transcriptome, it is sufficient to apply only one technology: Illumina RNA-Seq (FPKM > 0).

14.
Biology (Basel) ; 11(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358271

RESUMO

Organism aging is closely related to systemic metabolic changes. However, due to the multilevel and network nature of metabolic pathways, it is difficult to understand these connections. Today, scientists are trying to solve this problem using one of the main approaches of metabolomics-untargeted metabolome profiling. The purpose of this publication is to review metabolomic studies based on such profiling, both in animal models and in humans. This review describes metabolites that vary significantly across age groups and include carbohydrates, amino acids, carnitines, biogenic amines, and lipids. Metabolic pathways associated with the aging process are also shown, including those associated with amino acid, lipid, and energy metabolism. The presented data reveal the mechanisms of aging and can be used as a basis for monitoring biological age and predicting age-related diseases in the early stages of their development.

15.
Data Brief ; 42: 108055, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35345844

RESUMO

The data was acquired from 3 normal human liver tissues by LC-MS methods. The tissue liver samples from male subjects post mortem were obtained from ILSBio LLC (https://bioivt.com/). Liver tissue was frozen in liquid nitrogen, transported and shipped on dry ice. The proteins were extracted and purified followed up by trypsin hydrolysis. The peptide mixture was aliquoted and analyzed by different LC-MS approaches: one-dimensional shotgun LC-MS, two-dimensional LC-MS, two-dimensional SRM SIS (Selected Reaction Monitoring with Stable Isotope-labeled peptide Standards). The Shotgun assay resulted in a qualitative in-depth human liver proteome, and a semi-quantitative iBAQ (intensity-based absolute quantification) value was calculated to show the relative protein content of the sample. Absolute quantitative concentrations of proteins encoded by human chromosome 18 using SRM SIS were obtained.

16.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209175

RESUMO

The three-dimensional structure of monomers and homodimers of CYP102A1/WT (wild-type) proteins and their A83F and A83I mutant forms was predicted using the AlphaFold2 (AF2) and AlphaFold Multimer (AFMultimer) programs, which were compared with the rate constants of hydroxylation reactions of these enzyme forms to determine the efficiency of intra- and interprotein electron transport in the CYP102A1 hydroxylase system. The electron transfer rate constants (ket), which determine the rate of indole hydroxylation by the CYP102A1 system, were calculated based on the distances (R) between donor-acceptor prosthetic groups (PG) FAD→FMN→HEME of these proteins using factor ß, which describes an exponential decay from R the speed of electron transport (ET) according to the tunnelling mechanism. It was shown that the structure of monomers in the homodimer, calculated using the AlpfaFold Multimer program, is in good agreement with the experimental structures of globular domains (HEME-, FMN-, and FAD-domains) in CYP102A1/WT obtained by X-ray structural analysis, and the structure of isolated monomers predicted in AF2 does not coincide with the structure of monomers in the homodimer, although a high level of similarity in individual domains remains. The structures of monomers and homodimers of A83F and A83I mutants were also calculated, and their structures were compared with the wild-type protein. Significant differences in the structure of all isolated monomers with respect to the structures of monomers in homodimers were also found for them, and at the same time, insignificant differences were revealed for all homodimers. Comparative analysis for CYP102A1/WT between the calculated intra- and interprotein distances FAD→FMN→HEME and the rate constants of hydroxylation in these proteins showed that the distance between prosthetic groups both in the monomer and in the dimer allows the implementation of electron transfer between PGs, which is consistent with experimental literature data about kcat. For the mutant form of monomer A83I, an increase in the distance between PGs was obtained, which can restrict electron transportation compared to WT; however, for the dimer of this protein, a decrease in the distance between PGs was observed compared to the WT form, which can lead to an increase in the electron transfer rate constant and, accordingly, kcat. For the monomer and homodimer of the A83F mutant, the calculations showed an increase in the distance between the PGs compared to the WT form, which should have led to a decrease in the electron transfer rate, but at the same time, for the homodimer, the approach of the aromatic group F262 with heme can speed up transportation for this form and, accordingly, the rate of hydroxylation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons , Modelos Moleculares , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Conformação Proteica , Multimerização Proteica , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Mutação Puntual , Ligação Proteica , Relação Estrutura-Atividade
17.
Genes (Basel) ; 13(2)2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35205244

RESUMO

MicroRNAs (miRNAs), which represent short (20 to 22 nt) non-coding RNAs, were found to play a direct role in the development of autism in children. Herein, a highly sensitive "silicon-on-insulator"-based nanosensor (SOI-NS) has been developed for the revelation of autism-associated miRNAs. This SOI-NS comprises an array of nanowire sensor structures fabricated by complementary metal-oxide-semiconductor (CMOS)-compatible technology, gas-phase etching, and nanolithography. In our experiments described herein, we demonstrate the revelation of ASD-associated miRNAs in human plasma with the SOI-NS, whose sensor elements were sensitized with oligonucleotide probes. In order to determine the concentration sensitivity of the SOI-NS, experiments on the detection of synthetic DNA analogues of autism-associated miRNAs in purified buffer were performed. The lower limit of miRNA detection attained in our experiments amounted to 10-17 M.


Assuntos
Transtorno Autístico , Técnicas Biossensoriais , MicroRNAs , Nanofios , Transtorno Autístico/genética , Biomarcadores , Criança , Humanos , MicroRNAs/genética , Nanofios/química , Silício/química
18.
Cancers (Basel) ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36612136

RESUMO

Early diagnostics significantly improves the survival of patients with renal cell carcinoma (RCC), which is the prevailing type of adult kidney cancer. However, the absence of clinically obvious symptoms and effective screening strategies at the early stages result to disease progression and survival rate reducing. The study was focused on revealing of potential low molecular biomarkers for early-stage RCC. The untargeted direct injection mass spectrometry-based metabolite profiling of blood plasma samples from 51 non-cancer volunteers (control) and 78 patients with different RCC subtypes and stages (early stages of clear cell RCC (ccRCC), papillary RCC (pRCC), chromophobe RCC (chrRCC) and advanced stages of ccRCC) was performed. Comparative analysis of the blood plasma metabolites between the control and cancer groups provided the detection of metabolites associated with different tumor stages. The designed model based on the revealed metabolites demonstrated high diagnostic power and accuracy. Overall, using the metabolomics approach the study revealed the metabolites demonstrating a high value for design of plasma-based test to improve early ccRCC diagnosis.

19.
Micromachines (Basel) ; 14(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36677130

RESUMO

Ovarian cancer is a gynecological cancer characterized by a high mortality rate and tumor heterogeneity. Its early detection and primary prophylaxis are difficult to perform. Detecting biomarkers for ovarian cancer plays a pivotal role in therapy effectiveness and affects patients' survival. This study demonstrates the detection of microRNAs (miRNAs), which were reported to be associated with ovarian cancer tumorigenesis, with a nanowire biosensor based on silicon-on-insulator structures (SOI-NW biosensor). The advantages of the method proposed for miRNA detection using the SOI-NW biosensor are as follows: (1) no need for additional labeling or amplification reaction during sample preparation, and (2) real-time detection of target biomolecules. The detecting component of the biosensor is a chip with an array of 3 µm wide, 10 µm long silicon nanowires on its surface. The SOI-NW chip was fabricated using the "top-down" method, which is compatible with large-scale CMOS technology. Oligonucleotide probes (oDNA probes) carrying sequences complementary to the target miRNAs were covalently immobilized on the nanowire surface to ensure high-sensitivity biospecific sensing of the target biomolecules. The study involved two experimental series. Detection of model DNA oligonucleotides being synthetic analogs of the target miRNAs was carried out to assess the method's sensitivity. The lowest concentration of the target oligonucleotides detectable in buffer solution was 1.1 × 10-16 M. In the second experimental series, detection of miRNAs (miRNA-21, miRNA-141, and miRNA-200a) isolated from blood plasma samples collected from patients having a verified diagnosis of ovarian cancer was performed. The results of our present study represent a step towards the development of novel highly sensitive diagnostic systems for the early revelation of ovarian cancer in women.

20.
Micromachines (Basel) ; 12(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34945431

RESUMO

A nanoribbon biosensor (NRBS) was developed to register synthetic DNAs that simulate and are analogous to miRNA-17-3p associated with colorectal cancer. Using this nanoribbon biosensor, the ability to detect miRNA-17-3p in the blood plasma of a patient diagnosed with colorectal cancer has been demonstrated. The sensing element of the NRBS was a nanochip based on a silicon-on-insulator (SOI) nanostructure. The nanochip included an array of 10 nanoribbons and was designed with the implementation of top-down technology. For biospecific recognition of miRNA-17-3p, the nanochip was modified with DNA probes specific for miRNA-17-3p. The performance of the nanochip was preliminarily tested on model DNA oligonucleotides, which are synthetic analogues of miRNA-17-3p, and a detection limit of ~10-17 M was achieved. The results of this work can be used in the development of serological diagnostic systems for early detection of colorectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...